
Lecture 10

Monday, May 2, 2005

Supplementary Reading: Osher and Fedkiw, §18.1

1 Incompressible Flow

Recall the stability condition for compressible flow

max
Ω

{|u + c| , |u| , |u− c|} <
4x

4t

where the quantity on the left of the inequality is the physical wave speed and
the quantity on the right is the numerical wave speed. Then the time step is
given by

4t = α
4x

maxΩ {|u + c| , |u| , |u− c|}
where α is the CFL number, α < 1.

For example, we might have u = 1, c = 300, so that

|u + c| = 301,

|u| = 1,

|u− c| = 299.

Observe that the u ± c fields impose a much more severe restriction on the
time step than the u field. If |u| � |c| and we only care about the linear
flow phenomena, i.e., the phenomena corresponding to the u field, then we can
avoid this difficulty by modeling the flow as incompressible. The assumption
of incompressibility is valid in the limit as c

u → ∞ and is equivalent to the
divergence free condition ∇ · ~V = 0. In fact, the definition of incompressibility
for a velocity field ~V is that ∇ · ~V = 0.

Modeling the flow as incompressible allows us to eliminate the severe time
step restriction due to the u± c fields, and focus on the u field. As a result, we
lose the nonlinear behavior (e.g., shocks, rarefactions) associated with the u± c
fields.
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2 Equations

Starting from conservation of mass, momentum and energy, the equations for
incompressible flow are derived using the divergence free condition, ∇ · ~V = 0,
which implies that there is no compression or expansion in the flow field.

2.1 Conservation of Mass

In 1D, the equation for conservation of mass is

ρt + (ρu)x = 0

Applying the chain rule, we get

ρt + ρxu + ρux = 0

Since the flow is incompressible, ∇ · ~V = 0 which reduces to ux = 0 in 1D, so
that the equation is simply

ρt + uρx = 0

In multiple dimension, the equation is given by

ρt + ~u · ∇ρ = 0.

2.2 Conservation of Momentum

Starting with the equation for conservation of mass,

(ρu)t +
(
ρu2 + p

)
x

= 0

we then apply the chain rule to get

ρtu + ρut + ρuux + u (ρu)x + px = 0.

We combine the first and fourth terms

u (ρt + (ρu)x) + ρut + ρuux + px = 0.

Note that the quantity in parentheses is 0 from conservation of mass, so that

ρut + ρuux + px = 0.

By incompressibility, the second term is 0, so that we are left with

ρut + px = 0.
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Dividing by ρ, we get
ut +

px

ρ
= 0. (1)

In multiple dimension, the equation is given by

~ut + ~u · ∇~u +
∇p

ρ
= 0.

2.3 Conservation of Energy

The equation for conservation of energy in 1D is

Et + [(E + p) u]x = 0.

Substituting E = ρe + 1
2ρu2, we get(

ρe +
1
2
ρu2

)
t

+
[(

ρe +
1
2
ρu2 + p

)
u

]
x

= 0.

Differentiating, we have(
e +

1
2
u2

)
ρt+ρet+ρuut+

(
ρe +

1
2
ρu2 + p

)
ux+

(
e +

1
2
u2

)
uρx+ρuex+ρu2ux+upx = 0

Since ux = 0, this becomes(
e +

1
2
u2

)
ρt + ρet + ρuut +

(
e +

1
2
u2

)
uρx + ρuex + upx = 0

Rearranging terms, we have(
e +

1
2
u2

)
(ρt + uρx) + uρ

(
ut +

px

ρ

)
+ ρet + ρuex = 0

By the equations for conservation of mass and conservation of momentum, this
reduces to

ρet + ρuex = 0

Dividing by ρ, we get
et + uex = 0

In multiple dimensions the equation for conservation of energy is

et + ~u · ∇e = 0

In summary, the equations for incompressible flow (in multiple spatial di-
mensions) are

ρt + ~u · ∇ρ = 0

~ut + ~u · ∇~u +
∇p

ρ
= 0

et + ~u · ∇e = 0
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Recall that for compressible flow, we had an equation of state p = p(ρ, e).
For incompressible flow, we have ∇·~u = 0 and do not have an equation of state.
Notice also that the equation for conservation of energy is no longer needed to
get a closed system. Instead, we have the closed system

∇ · ~u = 0
ρt + ~u · ∇ρ = 0

~ut + ~u · ∇~u +
∇p

ρ
= 0

In the next lecture, we will see how the pressure is found using an elliptic
solver.
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