
Lecture 14

Wednesday, May 18, 2005

In this lecture we will focus on the discretization of the viscosity term in the
Navier-Stokes equations. Typically the inviscid equations are called the Euler
equations while the viscous equations are called the Navier-Stokes equations.

1 Viscosity

For incompressible flow with nonzero viscosity we still have the same equation
for conservation of mass. It is given by

ρt + ~V · ∇ρ = 0.

However, the momentum equation (in 2D) becomes{
ut + ~V · ∇u + px

ρ =
(2µux)x+(µ(uy+vx))y

ρ

vt + ~V · ∇v + py

ρ = g +
(µ(uy+vx))x+(2µvy)y

ρ

(1)

where we have added the viscosity terms to the RHS of the equation. In vector
form, this is can be written as

~Vt + ~V · ∇~V +
∇p

ρ
= ~g +

(∇ · τ)T

ρ

where

τ = µ

(
2ux uy + vx

uy + vx 2vy

)
= µ

(
∇u
∇v

)
+ µ

(
∇u
∇v

)T

Now consider the special case where µ = constant in (1). In that case we

1



can simplify the viscosity term on the RHS as follows.

(2µux)x + (µ (uy + vx))y

ρ
=

2µuxx + µuyy + µvxy

ρ

=
µ (uyy + uxx)

ρ
+

µ (uxx + vxy)
ρ

=
µ (uyy + uxx)

ρ
+

µ (ux + vy)x

ρ

=
µ (uyy + uxx)

ρ
+ 0

=
µ

ρ
4u

(µ (uy + vx))x + (2µvy)y

ρ
=

µuyx + µvxx + 2µvyy

ρ

=
µ (vxx + vyy)

ρ
+

µ (vyy + uxy)
ρ

=
µ (vxx + vyy)

ρ
+

µ (vy + ux)y

ρ

=
µ (vxx + vyy)

ρ
+ 0

=
µ

ρ
4v

Therefore for µ = constant, the equations (1) become{
ut + ~V · ∇u + px

ρ = µ
ρ4u

vt + ~V · ∇v + py

ρ = g + µ
ρ4v

(2)

1.1 Discretization

In the projection method for incompressible flow the viscosity term is included
in the computation of ~V ?, the intermediate velocity field. That is, the steps in
the projection method become

1. Compute the intermediate velocity field ~V ?

~V ? − ~V n

4t
+ ~V n · ∇~V n =

(∇ · τ)T

ρ
+ ~g (3)

2. Solve an elliptic equation for the pressure

4p̂ = ∇ · ~V ? (4)
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3. Compute the divergence free velocity field ~V n+1

~V n+1 − ~V ? +∇p̂ = 0 (5)

where we have again assume that ρ = constant, and set p̂ = p4t
ρ .

Next we will discretize the viscous terms in (2). Since we are using a MAC
grid and ~V ? is defined at the cell walls, we need the viscous term discretized at
the cell walls. We approximate the Laplacian of u at the grid point i + 1

2 , j as

(4un)i+ 1
2 ,j ≈

un
i− 1

2 ,j
− 2un

i+ 1
2 ,j

+ un
i+ 3

2 ,j

4x2
+

un
i+ 1

2 ,j−1
− 2un

i+ 1
2 ,j

+ un
i+ 1

2 ,j+1

4y2

This is a second order central difference approximation. The problem with
this approximation is that it requires that 4t ∼ 4x2 for stability. This is a
severe restriction on the time step and we would like to avoid it. One solution,
due to Kim and Moin, is to treat the viscosity implicitly. So for step 1 in the
projection method, we solve the equation

~V ? − ~V n

4t
+ ~V n · ∇~V n =

(∇ · τ?)T

ρ
+ ~g (6)

The term ~V n · ∇~V n is still treated the same as before. Then the terms at time
step n will be on the RHS, while the ? terms are on the LHS. In the case of
constant µ, we get a decoupled linear system of the form{

A1u = b1

A2v = b2

Another possibility is to use trapezoidal rule

~V ? − ~V n

4t
+ ~V n · ∇~V n =

(∇ · τ?)T + (∇ · τn)T

2ρ
+ ~g (7)

One problem in incompressible flow is that the numerical viscosity may be
larger than the physical viscosity. We want the numerical viscosity arising from
the the discretization of the ~V ·∇~V term to be smaller than the physical viscosity
∇·τ

ρ .
Recall the first order upwind discretization of the advection equation

ut + ux = 0.

The discretization is

ut +
ui − ui−1

4x
= 0.

⇒ ut +
ui −

(
ui −4x (ux)i + 4x2

2 (uxx)i + O(4x3)
)

4x
= 0

⇒ ut + (ux)i −
4x

2
(uxx)i = O(4x2)

⇒ ut + (ux)i =
4x

2
(uxx)i + O(4x2)
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So we see that the first order upwind discretization for the advection equation
gives a second order scheme for the advection-diffusion equation with diffusion
coefficient 4x

2 .
Now suppose you want to solve

ut + ux = µuxx.

From the above, we see that using a first order upwind discretization for ux our
modified equation will be

ut + ux =
(

µ +
4x

2

)
uxx.

µ is the real viscosity and 4x
2 is the numerical viscosity.

2 Semi-Lagrangian Advection

Previously we discretized the equation

ρt + ~V · ∇ρ = 0

using e.g., 3rd order TVD RK for the temporal derivative and 3rd order ENO in
a dimension by dimension approach for the spatial derivative. Here we consider
an alternative which is lower order, but not dimension by dimension. It is also
called the method of characteristics. On the MAC grid, we first average all of
the velocities from the faces to the cell centers using standard averaging.

ρ

v

v

uu
ρ ρ

Next, we think of the grid as a regular grid, with all quantities defined at
the nodes.

Vρ, Vρ, Vρ, Vρ,

Vρ, Vρ, Vρ, Vρ,

To determine a new value for ρ at time step n + 1, we look back in the
direction ~V a distance ~V4t. The new value of ρ is given by

ρn+1 (~x) = ρn
(
~x− ~V4t

)
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ρ,V

Vt

x

x-Vt

Generally ~x− ~V4t is not a grid point, so we must use averaging from nearby
grid points to get a value for ρ there. Some things to note:

• The method we described is first order. However the method can be made
as high order as is desired.

• The method has a very nice stability property. It is unconditionally stable
since

max |ρ|n+1 ≤ max |ρ|n .
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