Lecture 14

Wednesday, May 18, 2005

In this lecture we will focus on the discretization of the viscosity term in the Navier-Stokes equations. Typically the inviscid equations are called the Euler equations while the viscous equations are called the Navier-Stokes equations.

1 Viscosity

For incompressible flow with nonzero viscosity we still have the same equation for conservation of mass. It is given by

$$
\rho_{t}+\vec{V} \cdot \nabla \rho=0
$$

However, the momentum equation (in $2 D$) becomes

$$
\left\{\begin{array}{l}
u_{t}+\vec{V} \cdot \nabla u+\frac{p_{x}}{\rho}=\frac{\left(2 \mu u_{x}\right)_{x}+\left(\mu\left(u_{y}+v_{x}\right)\right)_{y}}{\rho} \tag{1}\\
v_{t}+\vec{V} \cdot \nabla v+\frac{p_{y}}{\rho}=g+\frac{\left(\mu\left(u_{y}+v_{x}\right)\right)_{x}+\left(2 \mu v_{y}\right)_{y}}{\rho}
\end{array}\right.
$$

where we have added the viscosity terms to the RHS of the equation. In vector form, this is can be written as

$$
\vec{V}_{t}+\vec{V} \cdot \nabla \vec{V}+\frac{\nabla p}{\rho}=\vec{g}+\frac{(\nabla \cdot \tau)^{T}}{\rho}
$$

where

$$
\tau=\mu\left(\begin{array}{cc}
2 u_{x} & u_{y}+v_{x} \\
u_{y}+v_{x} & 2 v_{y}
\end{array}\right)=\mu\binom{\nabla u}{\nabla v}+\mu\binom{\nabla u}{\nabla v}^{T}
$$

Now consider the special case where $\mu=$ constant in (1). In that case we
can simplify the viscosity term on the RHS as follows.

$$
\begin{aligned}
\frac{\left(2 \mu u_{x}\right)_{x}+\left(\mu\left(u_{y}+v_{x}\right)\right)_{y}}{\rho} & =\frac{2 \mu u_{x x}+\mu u_{y y}+\mu v_{x y}}{\rho} \\
& =\frac{\mu\left(u_{y y}+u_{x x}\right)}{\rho}+\frac{\mu\left(u_{x x}+v_{x y}\right)}{\rho} \\
& =\frac{\mu\left(u_{y y}+u_{x x}\right)}{\rho}+\frac{\mu\left(u_{x}+v_{y}\right)_{x}}{\rho} \\
& =\frac{\mu\left(u_{y y}+u_{x x}\right)}{\rho}+0 \\
& =\frac{\mu}{\rho} \triangle u \\
\frac{\left(\mu\left(u_{y}+v_{x}\right)\right)_{x}+\left(2 \mu v_{y}\right)_{y}}{\rho} & =\frac{\mu u_{y x}+\mu v_{x x}+2 \mu v_{y y}}{\rho} \\
& =\frac{\mu\left(v_{x x}+v_{y y}\right)}{\rho}+\frac{\mu\left(v_{y y}+u_{x y}\right)}{\rho} \\
& =\frac{\mu\left(v_{x x}+v_{y y}\right)}{\rho}+\frac{\mu\left(v_{y}+u_{x}\right)_{y}}{\rho} \\
& =\frac{\mu\left(v_{x x}+v_{y y}\right)}{\rho}+0 \\
& =\frac{\mu}{\rho} \triangle v
\end{aligned}
$$

Therefore for $\mu=$ constant, the equations (1) become

$$
\left\{\begin{array}{l}
u_{t}+\vec{V} \cdot \nabla u+\frac{p_{x}}{\rho}=\frac{\mu}{\rho} \Delta u \tag{2}\\
v_{t}+\vec{V} \cdot \nabla v+\frac{p_{y}}{\rho}=g+\frac{\mu}{\rho} \triangle v
\end{array}\right.
$$

1.1 Discretization

In the projection method for incompressible flow the viscosity term is included in the computation of \vec{V}^{\star}, the intermediate velocity field. That is, the steps in the projection method become

1. Compute the intermediate velocity field \vec{V}^{\star}

$$
\begin{equation*}
\frac{\vec{V}^{\star}-\vec{V}^{n}}{\Delta t}+\vec{V}^{n} \cdot \nabla \vec{V}^{n}=\frac{(\nabla \cdot \tau)^{T}}{\rho}+\vec{g} \tag{3}
\end{equation*}
$$

2. Solve an elliptic equation for the pressure

$$
\begin{equation*}
\triangle \hat{p}=\nabla \cdot \vec{V}^{\star} \tag{4}
\end{equation*}
$$

3. Compute the divergence free velocity field \vec{V}^{n+1}

$$
\begin{equation*}
\vec{V}^{n+1}-\vec{V}^{\star}+\nabla \hat{p}=0 \tag{5}
\end{equation*}
$$

where we have again assume that $\rho=$ constant, and set $\hat{p}=\frac{p \triangle t}{\rho}$.
Next we will discretize the viscous terms in (2). Since we are using a MAC grid and \vec{V}^{\star} is defined at the cell walls, we need the viscous term discretized at the cell walls. We approximate the Laplacian of u at the grid point $i+\frac{1}{2}, j$ as

$$
\left(\triangle u^{n}\right)_{i+\frac{1}{2}, j} \approx \frac{u_{i-\frac{1}{2}, j}^{n}-2 u_{i+\frac{1}{2}, j}^{n}+u_{i+\frac{3}{2}, j}^{n}}{\triangle x^{2}}+\frac{u_{i+\frac{1}{2}, j-1}^{n}-2 u_{i+\frac{1}{2}, j}^{n}+u_{i+\frac{1}{2}, j+1}^{n}}{\triangle y^{2}}
$$

This is a second order central difference approximation. The problem with this approximation is that it requires that $\Delta t \sim \Delta x^{2}$ for stability. This is a severe restriction on the time step and we would like to avoid it. One solution, due to Kim and Moin, is to treat the viscosity implicitly. So for step 1 in the projection method, we solve the equation

$$
\begin{equation*}
\frac{\vec{V}^{\star}-\vec{V}^{n}}{\Delta t}+\vec{V}^{n} \cdot \nabla \vec{V}^{n}=\frac{\left(\nabla \cdot \tau^{\star}\right)^{T}}{\rho}+\vec{g} \tag{6}
\end{equation*}
$$

The term $\vec{V}^{n} \cdot \nabla \vec{V}^{n}$ is still treated the same as before. Then the terms at time step n will be on the RHS, while the \star terms are on the LHS. In the case of constant μ, we get a decoupled linear system of the form

$$
\left\{\begin{array}{l}
A_{1} u=b_{1} \\
A_{2} v=b_{2}
\end{array}\right.
$$

Another possibility is to use trapezoidal rule

$$
\begin{equation*}
\frac{\vec{V}^{\star}-\vec{V}^{n}}{\triangle t}+\vec{V}^{n} \cdot \nabla \vec{V}^{n}=\frac{\left(\nabla \cdot \tau^{\star}\right)^{T}+\left(\nabla \cdot \tau^{n}\right)^{T}}{2 \rho}+\vec{g} \tag{7}
\end{equation*}
$$

One problem in incompressible flow is that the numerical viscosity may be larger than the physical viscosity. We want the numerical viscosity arising from the the discretization of the $\vec{V} \cdot \nabla \vec{V}$ term to be smaller than the physical viscosity $\frac{\nabla \cdot \tau}{\rho}$.

Recall the first order upwind discretization of the advection equation

$$
u_{t}+u_{x}=0
$$

The discretization is

$$
\begin{aligned}
& u_{t}+\frac{u_{i}-u_{i-1}}{\triangle x}=0 . \\
\Rightarrow & u_{t}+\frac{u_{i}-\left(u_{i}-\triangle x\left(u_{x}\right)_{i}+\frac{\Delta x^{2}}{2}\left(u_{x x}\right)_{i}+O\left(\triangle x^{3}\right)\right)}{\triangle x}=0 \\
\Rightarrow & u_{t}+\left(u_{x}\right)_{i}-\frac{\triangle x}{2}\left(u_{x x}\right)_{i}=O\left(\triangle x^{2}\right) \\
\Rightarrow & u_{t}+\left(u_{x}\right)_{i}=\frac{\triangle x}{2}\left(u_{x x}\right)_{i}+O\left(\triangle x^{2}\right)
\end{aligned}
$$

So we see that the first order upwind discretization for the advection equation gives a second order scheme for the advection-diffusion equation with diffusion coefficient $\frac{\Delta x}{2}$.

Now suppose you want to solve

$$
u_{t}+u_{x}=\mu u_{x x}
$$

From the above, we see that using a first order upwind discretization for u_{x} our modified equation will be

$$
u_{t}+u_{x}=\left(\mu+\frac{\triangle x}{2}\right) u_{x x}
$$

μ is the real viscosity and $\frac{\Delta x}{2}$ is the numerical viscosity.

2 Semi-Lagrangian Advection

Previously we discretized the equation

$$
\rho_{t}+\vec{V} \cdot \nabla \rho=0
$$

using e.g., 3rd order TVD RK for the temporal derivative and 3rd order ENO in a dimension by dimension approach for the spatial derivative. Here we consider an alternative which is lower order, but not dimension by dimension. It is also called the method of characteristics. On the MAC grid, we first average all of the velocities from the faces to the cell centers using standard averaging.

Next, we think of the grid as a regular grid, with all quantities defined at the nodes.

To determine a new value for ρ at time step $n+1$, we look back in the direction \vec{V} a distance $\vec{V} \triangle t$. The new value of ρ is given by

$$
\rho^{n+1}(\vec{x})=\rho^{n}(\vec{x}-\vec{V} \triangle t)
$$

Generally $\vec{x}-\vec{V} \triangle t$ is not a grid point, so we must use averaging from nearby grid points to get a value for ρ there. Some things to note:

- The method we described is first order. However the method can be made as high order as is desired.
- The method has a very nice stability property. It is unconditionally stable since

$$
\max |\rho|^{n+1} \leq \max |\rho|^{n}
$$

