Lecture 15

Monday, May 23, 2005

1 Semi-Lagrangian Advection (cont.)

In the previous lecture we described semi-Lagrangian advection (method of characteristics) for solving the advection equation

$$
\rho_{t}+\vec{V} \cdot \nabla \rho=0
$$

where the numerical scheme was given by

$$
\rho^{n+1}(\vec{x})=\rho^{n}(\vec{x}-\vec{V} \triangle t)
$$

As we noted previously the point $\vec{x}-\vec{V} \triangle t$ is generally not a grid point. To get a value for ρ at that point, we use linear interpolation in $1 D$ (bilinear interpolation in $2 D$, or trilinear interpolation in $3 D$). Let us look at the interpolation in detail in $1 D$. Assume that the point $x_{j}-u \triangle t$ lies between grid points x_{i} and x_{i+1}, and that its distance from grid point x_{i} is s.

Therefore its distance from grid point x_{i+1} is $\triangle x-s$. Then linear interpolation gives

$$
\begin{aligned}
\rho_{j}^{n+1} & =\rho_{i}^{n}+\frac{s}{\triangle x}\left(\rho_{i+1}^{n}-\rho_{i}^{n}\right) \\
& =\frac{\triangle x \rho_{i}^{n}+s \rho_{i+1}^{n}-s \rho_{i}^{n}}{\triangle x} \\
& =\frac{(\triangle x-s) \rho_{i}^{n}+s \rho_{i+1}^{n}}{\triangle x}
\end{aligned}
$$

or

$$
\rho_{j}^{n+1}=\left(1-\frac{s}{\triangle x}\right) \rho_{i}^{n}+\frac{s}{\triangle x} \rho_{i+1}^{n}
$$

Since $1-\frac{s}{\Delta x} \leq 1$ and $\frac{s}{\Delta x} \leq 1$, we have that

$$
\min \left(\rho_{i}^{n}, \rho_{i+1}^{n}\right) \leq \rho_{j}^{n+1} \leq \max \left(\rho_{i}^{n}, \rho_{i+1}^{n}\right)
$$

This fact is important for unconditional stability. For example, it immediately implies that the method is unconditionally stable in the max norm.

1.1 Semi-Lagrangian Velocity Advection

Recall that for incompressible flow, we have the momentum equation

$$
\begin{equation*}
\vec{V}_{t}+\vec{V} \cdot \nabla \vec{V}+\frac{\nabla p}{\rho}=\vec{g} \tag{1}
\end{equation*}
$$

which in $2 D$ is

$$
\left\{\begin{array}{l}
u_{t}+\vec{V} \cdot \nabla u+\frac{p_{x}}{\rho}=0 \\
v_{t}+\vec{V} \cdot \nabla v+\frac{p_{y}}{\rho}=g
\end{array}\right.
$$

Using the projection method the steps in the numerical solution are
1.

$$
\left\{\begin{array}{l}
\frac{u^{\star}-u^{n}}{\Delta t}+\vec{V}^{n} \cdot \nabla u^{n}=0 \\
\frac{v^{\star}-v^{n}}{\Delta t}+\vec{V}^{n} \cdot \nabla v^{n}=g
\end{array}\right.
$$

2.

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\frac{\nabla \cdot \vec{V}^{\star}}{\Delta t}
$$

3.

$$
\left\{\begin{array}{l}
\frac{u^{n+1}-u^{\star}}{\triangle t}+\frac{p_{x}}{\rho}=0 \\
\frac{v^{n+1}-v^{\star}}{\Delta t}+\frac{p_{y}}{\rho}=0
\end{array}\right.
$$

Only step 1 has a CFL condition for the hyperbolic terms. The other two steps do not have a time step restriction for stability. Therefore, if we use the semiLagrangian method for the velocity advection in step 1 we can eliminate the time step restriction. For u^{\star}, the method is

$$
u_{j}^{\star}=u^{n}\left(\vec{x}_{j}-\vec{V}_{j}^{n} \triangle t\right)
$$

For v^{\star} we must also account for gravity, so we have

$$
\begin{aligned}
& v_{j}^{\star}=v^{n}\left(\vec{x}_{j}-\vec{V}_{j}^{n} \triangle t\right) \\
& v_{j}^{\star}+=\triangle t g
\end{aligned}
$$

where we are computing

1) $v_{t}+\vec{V} \cdot \nabla v=0$
2) $v_{t}=g$

This is a Godunov splitting, which is first order accurate.

2 Vorticity

Here we describe a method to counteract the numerical dissipation that damps out many interesting features in the flow.

Taking the curl of the momentum equation (1) gives

$$
\vec{\omega}_{t}+\vec{V} \cdot \nabla \vec{\omega}+\ldots=0
$$

where

$$
\vec{\omega}=\nabla \times \vec{V} .
$$

In $2 D$,

$$
\vec{\omega}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
u & v & 0
\end{array}\right|=\left(-\frac{\partial}{\partial z} v, \frac{\partial}{\partial z} u, \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u\right)
$$

Since

$$
\frac{\partial}{\partial z} u=\frac{\partial}{\partial z} v=0
$$

we have

$$
\begin{aligned}
\vec{\omega} & =\left(0,0, v_{x}-u_{y}\right) \\
& =(0,0, \omega)
\end{aligned}
$$

So this is particularly nice in $2 D$ as we get one scalar equation for ω (in $3 D$ we still get a 3 -vector). Since ω will be either positive or negative, the vorticity vector $\vec{\omega}$ is pointing either into or out of the $x-y$ plane. Vorticity can be thought of as a paddle wheel which is trying to spin the flow. The direction of the spinning depends on the sign of ω.

Some points of interest regarding vorticity are

- Vorticity is conserved.
- Vorticity stays confined in high Reynolds number flows.

Here we discuss a simple turbulence model due to Steinhoff. First we compute vorticity location vectors

$$
\vec{N}=\frac{\nabla|\vec{\omega}|}{|\nabla| \vec{\omega}| |}
$$

Then we compute the paddle wheel force as

$$
\vec{F}=\vec{N} \times \vec{\omega}
$$

Steinhoff's idea was to add a forcing term to the momentum equations

$$
\vec{V}_{t}+\vec{V} \cdot \nabla \vec{V}+\frac{\nabla p}{\rho}=\vec{g}+\epsilon \triangle x \vec{F}
$$

It is interesting to note that if you linearize the forcing term, it looks like $-\Delta \vec{V}$.

