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Consider the linear advection equation

φt + ~V · ∇φ = 0 (1)

or in 1D
φt + uφx = 0.

• In upwinding, we choose the discretization of the spatial derivative based
on the sign of u.

– if u > 0, we use φ−x (e.g., D−φ = φi−φi−1
4x )

– if u < 0, we use φ+
x (e.g., D+φ = φi+1−φi

4x )

– if u = 0, do nothing

• Using ENO we construct higher order approximations to φ−x and φ+
x .

• Here we describe the WENO (weighted essentially non-oscillatory) method,
which gives a better approximation of φx than ENO.

The following is Osher and Fedkiw, §3.4.

1 Hamilton-Jacobi WENO

When calculating (φ−x )i, the third order accurate HJ ENO scheme uses a subset
of {φi−3, φi−2, φi−1, φi, φi+1, φi+2} depending on how the stencil is chosen. In
fact, there are exactly three possible HJ ENO approximations to (φ−x )i. Defining
v1 = D−φi−2, v2 = D−φi−1, v3 = D−φi, v4 = D−φi+1 and v5 = D−φi+2 allows
us to write
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as the three potential HJ ENO approximations to φ−x . The goal of HJ ENO
is the choose the single approximation with the least error by choosing the
smoothest possible polynomial interpolation of φ.

In [3], Liu et. al. pointed out that the ENO philosophy of picking exactly one
of three candidate stencils is overkill in smooth regions where the data is well
behaved. They proposed a Weighted ENO (WENO) method that takes a convex
combination of the three ENO approximations. Of course, if any of the three
approximations interpolate across a discontinuity, it is given minimal weight in
the convex combination in order to minimize its contribution and the resulting
errors. Otherwise, in smooth regions of the flow, all three approximations are
allowed to make a significant contribution in a way that improves the local
accuracy from third order to fourth order. Later, Jiang and Shu [2] improved
the WENO method by choosing the convex combination weights in order to
obtain the optimal fifth order accuracy in smooth regions of the flow. In [1],
following the work on HJ ENO in [5], Jiang and Peng extended WENO to
the Hamilton-Jacobi framework. This Hamilton-Jacobi WENO or HJ WENO
scheme turns out to be very useful for solving equation 1 as it reduces the errors
by more than an order of magnitude over the third order accurate HJ ENO
scheme for typical applications.

The HJ WENO approximation of (φ−x )i is a convex combination of the ap-
proximations in equations 2, 3 and 4 given by

φx = ω1φ
1
x + ω2φ

2
x + ω3φ

3
x (5)

where the 0 ≤ ωk ≤ 1 are the weights with ω1+ω2+ω3 = 1. The key observation
for obtaining high order accuracy in smooth regions is that weights of ω1 = .1,
ω2 = .6 and ω3 = .3 give the optimal fifth order accurate approximation to
φx. While this is the optimal approximation, it is only valid in smooth regions.
In nonsmooth regions, this optimal weighting can be very inaccurate and we
are better off with digital (ωk = 0 or ωk = 1) weights that choose a single
approximation to φx, i.e. the HJ ENO approximation.

Reference [2] pointed out that setting ω1 = .1 + O((4x)2), ω2 = .6 +
O((4x)2) and ω3 = .3 + O((4x)2) still gives the optimal fifth order accuracy
in smooth regions. In order to see this, we rewrite these as ω1 = .1 + C1(4x)2,
ω2 = .6 + C2(4x)2 and ω3 = .3 + C3(4x)2 and plug them into equation 5 to
obtain
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as the two terms that are added up to give the HJ WENO approximation to
φx. The term given by equation 6 is the optimal approximation which gives
the exact value of φx plus an O((4x)5) error term. Thus, if the term given by
equation 7 is O((4x)5), then the entire HJ WENO approximation is O((4x)5)
in smooth regions. To see that this is the case, first note that each of the
HJ ENO φk

x approximations gives the exact value of φx, denoted φE
x , plus an

O((4x)3) error term (in smooth regions). Thus, the term in equation 7 is

C1(4x)2φE
x + C2(4x)2φE
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plus an O((4x)2)O((4x)3) = O((4x)5) term. Since, each of the Ck are O(1),
as is φE

x , this appears to be an O((4x)2) term at first glance. However, since
ω1+ω2+ω3 = 1, we have C1+C2+C3 = 0 implying that the term in equation 8
is identically zero. Thus, the HJ WENO approximation is O((4x)5) in smooth
regions. Note that [3] obtained only fourth order accuracy, since they chose
ω1 = .1 + O(4x), ω2 = .6 + O(4x) and ω3 = .3 + O(4x).

In order to define the weights, ωk, we follow [1] and estimate the smoothness
of the stencils in equations 2, 3 and 4 as
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respectively. Using these smoothness estimates, we define
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where the 10−99 term is set to avoid division by zero in the definition of the
αk. This value for epsilon was first proposed by Fedkiw et al. [4] where the
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first term is a scaling term that aids in the balance between the optimal fifth
order accurate stencil and the digital HJ ENO weights. In the case that φ
is an approximate signed distance function, the vk which approximate φx are
approximately equal to one so that the first term in equation 15 can be set to
10−6. This first term can then absorb the second term yielding ε = 10−6 in
place of equation 15. Since the first term in equation 15 is only a scaling term,
it is valid to make this vk ≈ 1 estimate in multidimensions as well.

A smooth solution has small variation leading to small Sk. If the Sk are
small enough compared to ε then equations 12, 13 and 14 become α1 ≈ .1ε−2,
α2 ≈ .6ε−2 and α3 ≈ .3ε−2 exhibiting the proper ratios for the optimal fifth
order accuracy. That is, normalizing the αk to obtain the weights
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gives (approximately) the optimal weights of ω1 = .1, ω2 = .6 and ω3 = .3 when
the Sk are small enough to be dominated by ε. Nearly optimal weights are also
obtained when the Sk are larger than ε as long as all the Sk are approximately
the same size as is the case for sufficiently smooth data. On the other hand,
if the data is not smooth as indicated by large Sk, then the corresponding αk

will be small compared to the other αk’s giving that particular stencil limited
influence. If two of the Sk are relatively large, then their corresponding αk’s will
both be small and the scheme will rely most heavily on a single stencil similar
to the digital behavior of HJ ENO. In the unfortunate instance that all three
of the Sk are large, the data is poorly conditioned and none of the stencils are
particularly useful. This case is problematic for the HJ ENO method as well,
but fortunately it usually occurs only locally in space and time allowing the
methods to repair themselves after the situation subsides.

(φ+
x )i is constructed with a subset of {φi−2, φi−1, φi, φi+1, φi+2, φi+3}. Defin-

ing v1 = D+φi+2, v2 = D+φi+1, v3 = D+φi, v4 = D+φi−1 and v5 = D+φi−2

allows us to use equations 2, 3 and 4 as the three HJ ENO approximations to
(φ+

x )i. Then the HJ WENO convex combination is given by equation 5 with
the weights given by equations 16, 17 and 18.
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