
Lecture 2

Monday, April 4, 2005

Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5;
Leveque, Sections 6.7, 8.3, 10.2, 10.4

For a reference on Newton polynomial interpolation via divided differ-
ence tables, see Heath, Scientific Computing, Section 7.3.3.

In the previous lecture we started with a PDE and discretized it to con-
struct a numerical method. For convergence, we require that the numerical
method be both consistent and stable, possibly imposing conditions on the
time step (e.g., 4t < α4x) to achieve stability.

In this lecture we look at some higher order accurate discretizations.
Our goal in using higher order accurate methods is to improve upon consis-
tency. The order of accuracy of the method refers to the order of the local
truncation error resulting from the discretization. For example,

O(4x) 1st order accurate
O(4x2) 2nd order accurate
O(4x3) 3nd order accurate

...
...

The local truncation error may also have terms such as O(4t4x).

1 TVD Runge-Kutta

To achieve higher order accuracy in the temporal discretization, one can use
Total Variation Diminishing (TVD) Runge-Kutta (RK) methods. These
methods guarantee that the total variation of the solution does not increase,
so that no new extrema are generated. For example, if your solution rep-
resents a temperature profile, spurious oscillations caused by the numerical
method may trigger a chemical reaction in your simulation. Using a TVD
method would ensure that this situation does not occur. A related concept
is that of Total Variation Bounded (TVB) methods, where the growth in
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the total variation is bounded. Both concepts are related to stability. Below
we consider 1st order, 2nd order, and 3rd order TVD RK.

• 1st order, O(4t) error

The 1st order TVD RK is identical to forward Euler and 1st order
RK. It is given by

φn+1 − φn

4t
+ ~V n · ∇φn = 0

• 2nd order, O(4t2) error

The 2nd order TVD RK method is also known as 2nd order RK, the
midpoint rule, modified Euler, and Heun’s predictor-corrector method.

First, an Euler step is taken to advance the solution to time tn +4t

φn+1 − φn

4t
+ ~V n · ∇φn = 0 (1)

followed by a second Euler step to advance the solution to time tn+24t

φn+2 − φn+1

4t
+ ~V n+1 · ∇φn+1 = 0 (2)

followed by an averaging step

φn+1 =
1
2
φn +

1
2
φn+2 (3)

that takes a convex combination of the initial data and the result of
two Euler steps. The final averaging step produces the second order
accurate TVD (or TVB for HJ ENO and HJ WENO) approximation
to φ at time tn +4t.

• 3rd order, O(4t3) error
First, an Euler step is taken to advance the solution to time tn +4t

φn+1 − φn

4t
+ ~V n · ∇φn = 0 (4)

followed by a second Euler step to advance the solution to time tn+24t

φn+2 − φn+1

4t
+ ~V n+1 · ∇φn+1 = 0 (5)
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followed by an averaging step

φn+ 1
2 =

3
4
φn +

1
4
φn+2 (6)

that produces an approximation to φ at time tn + 1
24t. Then another

Euler step is taken to advance the solution to time tn + 3
24t

φn+ 3
2 − φn+ 1

2

4t
+ ~V n+ 1

2 · ∇φn+ 1
2 = 0 (7)

followed by a second averaging step

φn+1 =
1
3
φn +

2
3
φn+ 3

2 (8)

that produces a third order accurate approximation to φ at time
tn + 4t. This third order accurate TVD RK method has a stabil-
ity region that includes part of the imaginary axis. Thus, a stable
(although ill-advised) numerical method results from combining third
order accurate TVD RK with central differencing for the spatial dis-
cretization.

2 Hamilton-Jacobi ENO

Recall that in the first order accurate upwind differencing, we approximate
the spatial derivative as follows.

if ui > 0, use φ−x ≈ D−φ = φi−φi−1

4x

if ui < 0, use φ+
x ≈ D+φ = φi+1−φi

4x
if ui = 0, then uiφx = 0, so do nothing
This scheme can be improved upon by using a more accurate approxima-

tion for φ−x and φ+
x . The velocity, u, is still used to decide whether φ−x or φ+

x

is used, but the approximations for φ−x or φ+
x can be improved significantly.

The simplest way to approximate the spatial derivative is to assume that
the function is piecewise linear. This is what the approximations D+ and
D− do. However, we could also pass a parabola or higher order polyno-
mial through the data points. We can then differentiate the interpolated
polynomial to get the derivative.

The general idea behind ENO is to use a higher order accurate polyno-
mial to reconstruct φ and then to differentiate it to get the approximation
to φx. Such a polynomial is constructed at each grid point. The key to the
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algorithm is to choose the neighboring points for the interpolation so that
we are not interpolating across steep gradients.

Below we describe the implementation of the HJ ENO method in detail.
We do Newton polynomial interpolation via a divided difference table. Given
a set of n data points, (x1, φ1), (x2, φ2), ..., (xn, φn), the Newton polynomial
interpolating these points has the form

Pn−1(x) = α0 + α1(x− x1) + . . . + αn−1(x− x1) . . . (x− xn−1)

The coefficients, αj , are the entries in the divided difference table, which
we describe below. We use the notation, Dk

i to represent the kth divided
difference at grid point i. For example, D0

i = φi. The first few levels of the
divided difference table are constructed as follows.

0th D0
i φ = φi

1st D1
i+ 1

2

φ =
D0

i+1φ−D0
i φ

4x

2nd D2
i φ =

D1

i+1
2

φ−D1

i− 1
2

φ

24x

3rd D3
i+ 1

2

φ =
D2

i+1φ−D2
i φ

34x

...
...

Note that the zeroth level is defined at grid nodes, the first level is defined
midway in between grid nodes, the third level at grid nodes, etc. Also from
the above table we can see that D1

i+ 1
2

φ = (D+φ)i and D1
i− 1

2

φ = (D−φ)i.
The divided differences are used to reconstruct a polynomial of the form

φ(x) = Q0(x) + Q1(x) + Q2(x) + Q3(x) (9)

that can be differentiated and evaluated at xi to find (φ−x )i and (φ+
x )i. That

is, we use
φx(xi) = Q′

1(xi) + Q′
2(xi) + Q′

3(xi) (10)

to define (φ−x )i and (φ+
x )i. Note that the constant Q0(x) term vanishes upon

differentiation.
To find φ−x we start with k = i− 1, and to find φ+

x we start with k = i.
Then we define

Q1(x) = (D1
k+1/2φ)(x− xi) (11)

so that

Q′
1(xi) = D1

k+ 1
2
φ (12)
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implying that the contribution from Q′
1(xi) in equation 10 is the backward

difference in the case of φ−x and the forward difference in the case of φ+
x .

In other words, first order accurate polynomial interpolation is exactly first
order upwinding. Improvements are obtained by including the Q′

2(xi) and
Q′

3(xi) terms in equation 10 leading to second and third order accuracy
respectively.

Looking at the divided difference table and noting that D1
k+1/2φ was

chosen for first order accuracy, we have two choices for the second order
accurate correction. We could include the next point to the left and use
D2

kφ, or we could include the next point to the right and use D2
k+1φ. The

key observation is that smooth slowly varying data tends to produce small
numbers in divided difference tables while discontinuous or quickly varying
data tends to produce large numbers in divided difference tables. This is
obvious in the sense that the differences measure variation in the data. Com-
paring |D2

kφ| to |D2
k+1φ| indicates which of the polynomial interpolants has

more variation. We would like to avoid interpolating near large variations
such as discontinuities or steep gradients, since they cause overshoots in the
interpolating function leading to numerical errors in the approximation of
the derivative. Thus, if |D2

kφ| ≤ |D2
k+1φ| we set c = D2

kφ and k? = k − 1,
otherwise we set c = D2

k+1φ and k? = k. Then we define

Q2(x) = c(x− xk)(x− xk+1) (13)

so that

Q′
2(xi) = c (2(i− k)− 1)4x (14)

is the second order accurate correction to the approximation of φx in equa-
tion 10. If we stop here, i.e. omitting the Q3 term, we have a second
order accurate method for approximating φ−x and φ+

x . Note that k? was not
yet used. It is only defined for use below when calculating the third order
accurate correction.

Similar to the second order accurate correction, the third order accu-
rate correction is obtained by comparing |D3

k?+1/2φ| and |D3
k?+3/2φ|. If

|D3
k?+1/2φ| ≤ |D3

k?+3/2φ| we set c? = D3
k?+1/2φ, otherwise we set c? =

D3
k?+3/2φ. Then we define

Q3(x) = c?(x− xk?)(x− xk?+1)(x− xk?+2) (15)

so that

Q′
3(xi) = c?

(
3(i− k?)2 − 6(i− k?) + 2

)
(4x)2 (16)
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is the third order accurate correction to the approximation of φx in equation
10.
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