
Lecture 4

Monday, April 11, 2005

Supplementary Reading: Osher and Fedkiw, §14.1.3, §14.1.4; Leveque §11.6,
§12.9, §12.10, §12.11

1 Hyperbolic Conservation Laws

The important physical phenomena exhibited by hyperbolic conservation laws
are

1. bulk convection and waves

2. contact discontinuities

3. shocks

4. rarefactions

The first two phenomena are called ”linearly degenerate” because they can
be modeled locally by the linear advection equation, whereas the last two phe-
nomena are called ”genuinely nonlinear”.

In the previous lecture we discussed bulk convection and waves and contact
discontinuities. In this lecture we look at shocks and rarefactions.

1.1 Shock Waves

A shock is a spatial jump in material properties, like pressure and temperature,
that develops spontaneously from smooth distributions and then persists. The
shock jump is self-forming and also self-maintaining. This is unlike a contact
discontinuity which must be put in the system initially and will not re-sharpen
itself if it is smeared out by some other process. Shocks develop through a
feedback mechanism in which strong impulses move faster than weak ones, and
thus tend to steepen themselves up into a “step” profile as they travel through
the system. Familiar examples are the “sonic boom” of a jet aircraft, or the
“bang” from a gun. These sounds are our perceptions of a sudden jump in air
pressure.
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The simplest model equation that describes shock formation is the one di-
mensional Burgers’ equation

ut +
(

u2

2

)
x

= 0

which looks like the convection equation with a non-constant convective speed
of u, i.e. ut+uux = 0. Note that this equation is nonlinear, because the velocity
depends on the conserved variable u. Thus larger u values move faster, and they
will overtake smaller values. This ultimately resulting in the development of, for
example, a right-going shock if the initial data for u is any positive, decreasing
function. Shocks move at a speed that is not simply related to the bulk flow
speed or characteristic speed, and is not immediately evident from examining
the flux, in contrast to contacts. Shock speed is controlled by the difference
between influx and outflux of conserved quantity into the region. Specifically,
suppose a conserved quantity u with conservation law

ut + f(u)x = 0

has a step function profile with constant values extending both to the left, uL,
and to the right, uR, with a single shock jump transition in between moving
with speed s. Then the integral form of the conservation law,

d

dt

∫
Ω

u dV = −
∫

∂Ω

~f(u) · dA

applied to any interval containing the shock, gives the relation

s4t(uR − uL)
4t

= f(uR)− f(uL)

⇒ s(uR − uL) = f(uR)− f(uL)

which is just another statement that the rate at which u appears, s(uR − uL),
in the interval of interest is given by the difference in fluxes across the interval.
See figure 1 below.

We use the notation [u] to denote the jump in u. The shock speed can then
be written

s =
[f(u)]

[u]

for the scalar conservation law, or

s [u] = [f(u)]

for a system of conservation laws.
For example, we look at Burgers equation with uL = 1 and uR = −1. We
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Figure 1: Derivation of the shock speed for a conserved quantity u with a step
function profile with constant values extending both to the left, uL, and to the
right, uR. The red box signifies a control region. The blue shaded region is the
additional amount of u in the control region due to the motion of the shock.
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compute the shock speed.

f(uL) =
u2

L

2
=

1
2

f(uR) =
u2

R

2
=

1
2

s =
[f(u)]

[u]

=
0
2

= 0

The computation shows that the shock sits still. If we take uL = 2 and
uR = −1, we have

f(uL) =
u2

L

2
=

4
2

= 2

f(uR) =
u2

R

2
=

1
2

s =
[f(u)]

[u]

=
1
2 − 2
−1− 2

=
−1.5
−3

=
1
2

Thus we see that the proper speed of the shock is directly determined by
conservation of u via the flux f . This has an important implication for numerical
method design: namely, a numerical method will only “capture” the correct
shock speeds if it has “conservation form”, i.e. if the rate of change of u at some
node is the difference of fluxes which are accurate approximations of the real
flux f . The Lax-Wendroff theorem tells us that if a consistent and conservative
method converges, then it converges to a weak solution of the conservation law
(see Leveque, §12.10). Note that a weak solution may not be unique. Typically
we are interested in the weak solution that satisfies an entropy condition (see
Leveque, §12.11).

In the presence of shocks and other discontinuities, we must look for weak
solutions to the conservation law. An alternative is to modify the differential
equation by adding a small amount of viscosity.

ut + f(u)x = εuxx, ε > 0

As ε → 0, we obtain the vanishing viscosity solution. This solution is the unique
weak solution that satisfies the entropy condition. See Leveque, §11.6 for more
details about the vanishing viscosity solution.

Shocks have a self-sharpening feature that has two implications for numerical
methods. First, it means that even if the initial data is smooth, steep gradi-
ents and jumps will form spontaneously. Thus, our numerical method must be
prepared to deal with shocks even if none are present in the initial data. Sec-
ond, there is a beneficial effect from self-sharpening, because modest numerical
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errors introduced near a shock (smearing or small oscillations) will tend to be
eliminated, and will not accumulate. The shock is naturally driven towards its
proper shape. Because of this, computing strong shocks is mostly a matter of
having a conservative scheme in order to get their speed correct.

1.2 Rarefactions

Whereas Burgers equation with monotonically decreasing initial data results in
the formation of a shock, Burgers equation with monotonically increasing initial
data results in the formation of a rarefaction. A rarefaction is a discontinuous
jump or steep gradient in properties that dissipates as a smooth expansion. A
common example is the jump in air pressure from outside to inside a balloon
which dissipates as soon as the balloon is burst and the high pressure gas inside
is allowed to expand. Such an expansion also occurs when the piston in an
engine is rapidly pulled outward from the cylinder.

A rarefaction tends to smooth out local features which is generally beneficial
for numerical modeling. However, a rarefaction often connects to a smooth (e.g.
constant) solution region and this results in a “corner” which is notoriously diffi-
cult to capture accurately. The main numerical problem posed by rarefactions is
that of initiating the expansion. If the initial data is a perfect, symmetrical step,
such as u(x) = sign(x), it may be “stuck” in this form, since the steady state
Burgers’ equation is satisfied identically (i.e. the flux u2/2 is constant every-
where, and similarly in any numerical discretization). However, local analysis
can identify this stuck expansion, because the characteristic speed u on either
side points away from the jump suggesting its potential to expand. In order to
get the initial data unstuck, a small amount of smoothing must be applied to
introduce some intermediate state values that have a non-constant flux to drive
expansion. In numerical methods, this smoothing applied at a jump where the
effective local velocity indicates expansion should occur is called an “entropy
fix”, since it allows the system to evolve from the artificial low entropy initial
state to the proper increased entropy state of a free expansion.

Let us illustrate the point above. Assume we are solving Burgers equation
with initial data uL = −1 and uR = 1. Then

f(uR) =
1
2

f(uL) =
1
2

⇒ut = 0

In this case our numerical solution is ”stuck”, and we are computing an entropy
violating expansion shock. We don’t want this solution. In order to obtain the
correct, entropy condition satisfying solution, which is the rarefaction, we add
some numerical smearing by solving

ut +
(

u2

2

)
x

= εuxx
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so that initially we are solving

ut = εuxx

This smears out the step function profile enough to initiate the rarefaction.
Note: One challenge in computing numerical solutions to hyperbolic conser-

vation laws is that a wrong solution might look very good visually, but still be
incorrect. For example, if your scheme is not in conservation form, the solution
might look almost correct, except that the location of the shock will be off by a
few grid cells. This sort of error can be difficult or impossible to detect visually.
In short, make sure your scheme is in conservation form!
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