
Lecture 5

Wednesday, April 13, 2005

Supplementary Reading: Osher and Fedkiw, §14.2; Leveque §4.1, §12.9,
§12.10

1 Discrete Conservation Form

To ensure that shocks and other steep gradients are captured by the scheme,
i.e. they move at the right speed even if they are unresolved, we must write
the equation in a discrete conservation form. That is, a form in which the rate
of change of conserved quantities is equal to a difference of fluxes. This form
guarantees that we discretely conserve the total amount of the states u (e.g.
mass, momentum and energy) present, in analogy with the integral form given
by

d

dt

∫
Ω

udV +
∫

∂Ω

~f(u) · dA =
∫

Ω

s(u)dV

More importantly, this can be shown to imply that steep gradients or jumps in
the discrete profiles propagate at the physically correct speeds.

Usually, conservation form is derived for control volume methods, that is
methods that evolve cell average values in time rather than nodal values. In this
approach, a grid node xi is assumed to be the center of a grid cell (xi− 1

2
, xi+ 1

2
),

which is taken as the control volume. We integrate the conservation law across
this control volume to obtain∫ x

i+ 1
2

x
i− 1

2

ut + f(u)x dx =
d

dt

∫ x
i+ 1

2

x
i− 1

2

u dx + f(ui+ 1
2
)− f(ui− 1

2
) = 0.

If we let ui denote the total quantity of u in the ith grid cell, i.e.

ui =
∫ x

i+ 1
2

x
i− 1

2

u dx

then we can write this as

(ui)t+f(ui+ 1
2
)− f(ui− 1

2
) = 0. (1)
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We will refer to values computed at the xi as grid point or cell center values,
and values computed at the xi± 1

2
as half grid point, cell wall, or flux values. We

also define the cell average value of u in the grid cell i, uave,i as

uave,i =
1
4x

ui =
1
4x

∫ x
i+ 1

2

x
i− 1

2

u dx

Equation (1) has the desired conservation form in that the rate of change
of the cell average is a difference of fluxes. The difficulty with this formulation
is that it requires transforming between cell averages of u (which are directly
evolved in time by the scheme) and cell wall values of u (which must be recon-
structed) to evaluate the needed fluxes. We would like to avoid reconstructing
pointwise values of u from the cell average values. The distinction between cell
average and midpoint values can be ignored for schemes whose accuracy is no
higher than second order, since the cell average and the midpoint value differ
by only O(∆x2). This can be seen if we write u in terms of its Taylor series
expansion about the point xi

u(x) = u(xi) + (x− xi)u′(xi) +
(x− xi)2

2
u′′(xi) + . . .

then

uave,i =
1

(xi+ 1
2
− xi− 1

2
)

∫ x
i+ 1

2

x
i− 1

2

u(x) dx

=
1
4x

∫ x
i+ 1

2

x
i− 1

2

[
u(xi) + (x− xi)u′(xi) +

(x− xi)2

2
u′′(xi) + . . .

]
dx

=
1
4x

u(xi)4x +
(x− xi)2

2

∣∣∣∣xi+ 1
2

x
i− 1

2

u′(xi) +
(x− xi)3

6

∣∣∣∣xi+ 1
2

x
i− 1

2

u′′(xi) + . . .


= u(xi) +

4x2

24
u′′(xi) + O(4x4)

We assume that we have a uniform grid, so that

xi+ 1
2
− xi− 1

2
= 4xi = 4x

For i = 1, . . . ,m, we have

(ui)t + f
(
ui+ 1

2

)
− f

(
ui− 1

2

)
= 0.

Summing over i, the fluxes cancel except for the ones on either side of the
domain, so we get

m∑
i=1

(ui)t + f
(
um+ 1

2

)
− f

(
u 1

2

)
= 0,
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or

m∑
i=1

(uave,i4xi)t + f
(
um+ 1

2

)
− f

(
u 1

2

)
= 0.

When using the weak form of the conservation law we evolve cell average
values of u in time, but require pointwise values of u at the half grid cells in
order to evaluate the flux functions. As noted above, if we only wanted a second
order accurate scheme, we could simply approximate the cell average value with
the value of u at the cell center. However, we would like to use the pointwise
values of u while still getting better than second order accuracy. To achieve
this, we replace the physical flux function with a numerical flux function. The
numerical flux function F is such that

f(u)x =
F(x + ∆x/2)−F(x−∆x/2)

∆x
(2)

We call F the numerical flux since we require it in our numerical scheme, and
also to distinguish it from the closely related “physical flux”, f(u). It is not
obvious that the numerical flux function exists, but from relationship 2 one can
solve for its Taylor expansion to obtain

F = f(u)− (∆x)2

24
f(u)xx +

7(∆x)4

5760
f(u)xxxx − · · · (3)

In summary, we start with the conservation law

ut + f(u)x = 0

Integrating over a grid cell, we have

(uave,i4x)t + f
(
ui+ 1

2

)
− f

(
ui− 1

2

)
= 0

Replacing uave,i with the pointwise value ui we make an O(4x2) error

(ui4x)t + f
(
ui+ 1

2

)
− f

(
ui− 1

2

)
= O(4x2)

Introducing the numerical flux function instead of the physical flux function
eliminates the error

(ui)t +
F

(
xi+ 1

2

)
−F

(
xi− 1

2

)
4x

= 0.

This is the desired conservation form.
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