
Lecture 6

Monday, April 18, 2005

Supplementary Reading: Osher and Fedkiw, §14.3.2, §14.3.3

In the previous lecture we introduced the numerical flux function. To review,
we start with the strong form of the conservation law,

ut + f(u)x = 0.

Integrating over a grid cell, we have the weak form

(uave,i4x)t + f
(
ui+ 1

2

)
− f

(
ui− 1

2

)
= 0.

Replacing uave,i with the pointwise value ui we make an O(4x2) error

(ui4x)t + f
(
ui+ 1

2

)
− f

(
ui− 1

2

)
= O(4x2)

Introducing the numerical flux function instead of the physical flux function
eliminates the error

(ui)t +
F
(
xi+ 1

2

)
−F

(
xi− 1

2

)
4x

= 0.

1 Constructing the Numerical Flux Function

We define the numerical flux function through the relation

f(ui)x =
Fi+1/2 −Fi−1/2

∆x
(1)

To obtain a convenient algorithm for computing this numerical flux function,
we define h(x) implicitly through the following equation

f(u(x)) =
1
4x

∫ x+4x/2

x−4x/2

h(y)dy (2)
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and note that taking a derivative on both sides of this equation yields

f(u(x))x =
h(x +4x/2)− h(x−4x/2)

4x
(3)

which shows that h is identical to the numerical flux function at the cell walls.
That is Fi±1/2 = h(xi±1/2) for all i. We calculate h by finding its primitive

H(x) =
∫ x

x−1/2

h(y)dy (4)

using polynomial interpolation, and then take a derivative to get h. We build a
divided difference table to construct H.

zeroth order D0
i+ 1

2
H at cell walls

first order D1
i H at cell centers

second order D2
i+ 1

2
H at cell walls

third order D3
i H at cell centers

...
...

...

That is, the even divided differences of H are at the cell walls, and the odd
divided differences of H are at the cell centers. Since we are actually interested
in determining h, we do not need the zeroth order divided differences of H as
they will drop out when we differentiate to obtain h. Therefore, we can ignore
the zeroth level of the divided difference table for H, and construct the table
starting at the first level. The first level is given by

D1
i H =

H
(
xi+ 1

2

)
−H

(
xi− 1

2

)
4x

= f (ui)

= D0
i f

This is because

H(xi+ 1
2
) =

∫ xi+1/2

x−1/2

h(y)dy

=
i∑

j=0

(∫ xj+1/2

xj−1/2

h(y)dy

)

= 4x
i∑

j=0

f(u(xj))

And similarly,

H(xi− 1
2
) = 4x

i−1∑
j=0

f(u(xj))
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So that
H(xi+ 1

2
)−H(xi− 1

2
) = 4xf(u(xi))

The higher divided differences are

D2
i+1/2H =

f(u(xi+1))− f(u(xi))
24x

=
1
2
D1

i+1/2f (5)

D3
i H =

1
3
D2

i f (6)

continuing in that manner.
According to the rules of polynomial interpolation, we can take any path

along the divided difference table to construct H, although they do not all give
good results. ENO reconstruction consists of two important features. First,
choose D1

i H in the upwind direction. Second, choose higher order divided dif-
ferences by taking the smaller in absolute value of the two possible choices. Once
we construct H(x), we evaluate H ′(xi+1/2) to get the numerical flux Fi+1/2.

2 ENO-Roe Discretization (Third Order Accu-
rate)

For a specific cell wall, located at xi0+1/2, we find the associated numerical flux
function Fi0+1/2 as follows. First, we define a characteristic speed

λi0+1/2 = f ′(ui0+1/2)

For example, recall Burgers’ equation,

ut +
(

u2

2

)
x

= 0.

The flux is given by

f(u) =
(

u2

2

)
so that

f ′(u) = u

Therefore,

λ(x) = f ′(u(x)) = u(x).

The value of u at the half grid points is defined using a standard linear average

ui0+1/2 = (ui0 + ui0+1)/2
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Then, if λi0+1/2 > 0, set k = i0. Otherwise, set k = i0 + 1. Define

Q1(x) = (D1
kH)(x− xi0+1/2) (7)

If |D2
k−1/2H| ≤ |D2

k+1/2H|, then c = D2
k−1/2H and k? = k − 1. Otherwise,

c = D2
k+1/2H and k? = k. Define

Q2(x) = c(x− xk−1/2)(x− xk+1/2) (8)

If |D3
k?H| ≤ |D3

k?+1H|, then c? = D3
k?H. Otherwise, c? = D3

k?+1H. Define

Q3(x) = c?(x− xk?−1/2)(x− xk?+1/2)(x− xk?+3/2) (9)

Then

Fi0+1/2 = H ′(xi0+1/2) = Q′
1(xi0+1/2) + Q′

2(xi0+1/2) + Q′
3(xi0+1/2) (10)

which simplifies to

Fi0+1/2 = D1
kH + c (2(i0 − k) + 1)4x + c?

(
3(i0 − k?)2 − 1

)
(4x)2. (11)
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