
Lecture 7

Wednesday, April 20, 2005

Supplementary Reading: Osher and Fedkiw, §14.3.4, §14.4, §14.5

In the last lecture we introduced the ENO-Roe discretization for evaluating
the numerical flux function. In this lecture we introduce the ENO-Roe Fix and
ENO-Local Lax Friedrichs methods for overcoming a potential problem with
the ENO-Roe discretization.

1 ENO-LLF Discretization (and the Entropy Fix)

The ENO-Roe discretization can admit entropy violating expansion shocks near
sonic points. That is, at a place where a characteristic velocity changes sign (a
sonic point) it is possible to have a stationary expansion shock solution with
a discontinuous jump in value. If this jump were smoothed out even slightly,
it would break up into an expansion fan (i.e. rarefaction) and dissipate, which
is the desired physical solution. For a specific cell wall, xi0+1/2, if there are
no nearby sonic points, then we use the ENO-Roe discretization. Otherwise,
we add high order dissipation to our calculation of Fi0+1/2 to break up any
entropy violating expansion shocks. We call this entropy fixed version of the
ENO-Roe discretization ENO-Roe Fix or just ENO-RF. More specifically, we
use λi0 = f ′(ui0) and λi0+1 = f ′(ui0+1) to decide if there are sonic points in the
vicinity. If λi0 and λi0+1 agree in sign, we use the ENO-Roe discretization where
λi0+1/2 is taken to be the same sign as λi0 and λi0+1. Otherwise we use the
ENO-LLF entropy fix discretization given below. Note that ENO-LLF is applied
at both expansions where λi0 < 0 and λi0+1 > 0 and at shocks where λi0 > 0
and λi0+1 < 0. While this adds extra numerical dissipation at shocks, it is not
harmful as shocks are self-sharpening. In fact, this extra dissipation provides
some viscous regularization which is especially desireable in multiple spatial
dimensions. For this reason, authors sometimes use the ENO-LLF method
everywhere as opposed to mixing in ENO-Roe discretizations where the upwind
direction is well determined by the eigenvalues λ.

The ENO-LLF discretization is formulated as follows. Consider two primi-
tive functions H+ and H−. We compute a divided difference table for each of
them with their first divided differences being

D1
i H± = f(ui) ± αi0+

1
2
ui (1)
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where

αi0+
1
2

= max (|λi0 |, |λi0+1|) (2)

is our dissipation coefficient, and controls the amount of dissipation added. Note
that the dissipation coefficient, αi0+

1
2
, is determined locally for each cell wall,

hence the name ENO-local Lax Friedrichs. (One could also construct a scheme
where a global dissipation coefficient α is used, but this generally adds too much
dissipation).

The second and third divided differences, D2
i+1/2H

± and D3
i H± are then

defined in the standard way, like those of H.
For H+, set k = i0. Then, replacing H with H+ everywhere, define Q1(x),

Q2(x), Q3(x), and finally F+
i0+1/2 using the ENO-Roe algorithm above. For

H−, set k = i0 + 1. Then, replacing H with H− everywhere, define Q1(x),
Q2(x), Q3(x), and finally F−

i0+1/2 again by using the ENO-Roe algorithm above.
Finally,

Fi0+1/2 =
F+

i0+1/2 + F−
i0+1/2

2
(3)

is the new numerical flux function with added high order dissipation.

2 Multiple Spatial Dimensions

In multiple spatial dimensions, the ENO discretization is applied independently
using a dimension by dimension discretization. For example, consider a two
dimensional conservation law

ut + f(u)x + g(u)y = 0 (4)

on a rectangular 2-D grid. Here, we sweep through the grid from bottom to top
performing ENO on 1-D horizontal rows of grid points to evaluate the f(u)x

term. The g(u)y term is evaluated in a similar manner sweeping through the
grid from left to right performing ENO on 1-D vertical rows of grid points. Once
we have a numerical approximation to each of the spatial terms, we update the
entire equation in time with a method of lines approach using, for example, a
TVD Runge-Kutta method.

We emphasize that ”dimension by dimension” discretization is not the same
as ”dimensional splitting”, such as the first order Godunov splitting and second
order Strang splitting. In dimension by dimension discretization, the fluxes
in each dimension are evaluated independently, but the time stepping is still
coupled.

3 Systems of Conservation Laws

In general, a hyperbolic system will simultaneously contain a mixture of processes:
smooth bulk convection and wave motion, and discontinuous processes involving
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contacts, shocks and rarefactions. For example, if a gas in a tube is initially
prepared with a jump in the states (density, velocity and temperature) across
some surface, as the evolution proceeds in time these jumps will break up into a
combination of shocks, rarefactions and contacts, in addition to any bulk motion
and sound waves that may exist or develop.

The hyperbolic systems we encounter in physical problems are written in
what are effectively the mixed variables where the apparent behavior is quite
complicated. A transformation is required to decouple them back into unmixed
fields that exhibit the pure contact, shock and rarefaction phenomena (as well
as bulk convection and waves). In a real system, this perfect decoupling is not
possible because the mixing is nonlinear, but it can be achieved approximately
over a small space and time region, and this provides the basis for the theoretical
understanding of the structure of general hyperbolic systems of conservation
laws. This is called a transformation to characteristic variables. As we shall see,
this transformation also provides the basis for designing appropriate numerical
methods.

Consider a simple hyperbolic system of N equations

~Ut + [~F (~U)]x = 0 (5)

in one spatial dimension. The basic idea of characteristic numerical schemes is
to transform this nonlinear system to a system of N (nearly) independent scalar
equations of the form

ut + λux = 0 (6)

and discretize each scalar equation independently in an upwind biased fashion
using the characteristic velocity λ. Then transform the discretized system back
into the original variables.
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