Lecture 8

Monday, April 25, 2005

Supplementary Reading: Osher and Fedkiw, §14.5.1

In the last lecture we started discussing systems of conservation laws. In particular consider a hyperbolic system of conservation laws with N equations in one spatial dimension, given by

$$
\begin{equation*}
\vec{U}_{t}+[\vec{F}(\vec{U})]_{x}=0 \tag{1}
\end{equation*}
$$

The idea is to decompose the system into N separate scalar equations of the form

$$
u_{t}+\lambda u_{x}=0
$$

1 Example

We start with an example of two separate scalar equations and show how we can change variables to write them as a coupled system. Consider the two equations

$$
\left\{\begin{array}{l}
u_{t}-u_{x}=0 \\
v_{t}+v_{x}=0 \\
u(x, 0)=u_{0}(x) \\
v(x, 0)=v_{0}(x)
\end{array}\right.
$$

The solution is

$$
\begin{aligned}
u(x, t) & =u_{0}(x+t) \\
v(x, t) & =v_{0}(x-t)
\end{aligned}
$$

For example, figure 1 depicts the solution for the initial data given below.

$$
\begin{aligned}
& u_{0}(x)= \begin{cases}1, & x \in(-1,0) \\
0, & \text { otherwise }\end{cases} \\
& v_{0}(x)= \begin{cases}1, & x \in(0,1) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Figure 1: The solution is the initial data for u moving to the left with speed 1 , and the initial data for v moving to the right with speed 1.

Next we make the change of variables

$$
\begin{aligned}
w & =v+u \\
z & =v-u
\end{aligned}
$$

This gives

$$
\begin{aligned}
w_{t} & =v_{t}+u_{t}
\end{aligned}=-v_{x}+u_{x}=-z_{x} .
$$

So u and v are independent of each other, but w and z depend on each other.
The system for w and z can be written as

$$
\binom{w}{z}_{t}+\binom{z}{w}_{x}=0
$$

The solution is given by

$$
\begin{aligned}
w(x, t) & =v_{0}(x-t)+u_{0}(x+t) \\
z(x, t) & =v_{0}(x-t)-u_{0}(x+t)
\end{aligned}
$$

The graph for w is shown in figure 2.

Figure 2: The solution consists of two separate components, one moving to the left, and the other moving to the right.

This demonstrates though the picture for w may appear complicated, the underlying solutions u and v are simply two waves moving to the left and right.

Now we rewrite the system as

$$
\binom{w}{z}_{t}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{w}{z}_{x}=0
$$

which is in the form

$$
\vec{U}_{t}+J \vec{U}_{x}=0
$$

Similarly, we can write the system (1) in quasilinear form as

$$
\vec{U}_{t}+\vec{F}^{\prime}(\vec{U}) \vec{U}_{x}=0
$$

Here $J=\frac{\partial \vec{F}}{\partial \vec{U}}$. Recall that in the scalar case

$$
u_{t}+f(u)_{x}=0
$$

where we had the quasilinear form

$$
u_{t}+f^{\prime}(u) u_{x}=0
$$

the characteristic speed was given by $f^{\prime}(u)$. For the case of systems, the characteristic speeds are given by the eigenvalues of the Jacobian, J.

Coming back to our example, we have

$$
J=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We compute the eigenvalues:

$$
\operatorname{det}(\lambda I-J)=\left|\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right|=\lambda^{2}-1
$$

So the eigenvalues of J are

$$
\lambda^{1}=-1, \lambda^{2}=1
$$

Next we determine the eigenvectors. For $\lambda^{1}=-1$, we have

$$
J R^{1}=\lambda^{1} R^{1}
$$

We solve for $R^{1}=\binom{a}{b}$.

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{a}{b} & =-\binom{a}{b} \\
\Rightarrow\binom{b}{a} & =-\binom{a}{b}
\end{aligned}
$$

Hence $R^{1}=\binom{1}{-1}$ is a solution.
For $\lambda^{2}=1$, we have

$$
J R^{2}=\lambda^{2} R^{2}
$$

We solve for $R^{2}=\binom{c}{d}$.

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \binom{c}{d}
\end{aligned}=\binom{c}{d}, ~=\binom{d}{c}=\binom{c}{d}
$$

Hence $R^{2}=\binom{1}{1}$ is a solution. Therefore, we have computed that

$$
J\left(R^{1}, R^{2}\right)=\left(R^{1}, R^{2}\right)\left(\begin{array}{cc}
\lambda^{1} & 0 \\
0 & \lambda^{2}
\end{array}\right)
$$

or,

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Note that if R is a matrix whose columns are the right eigenvectors of J,

$$
J R=R \Lambda
$$

then,

$$
R^{-1} J=\Lambda R^{-1}
$$

So the rows of R^{-1} are left eigenvectors of J. We use L to denote the matrix whose rows are the left eigenvalues of J, and we can choose it to be equal to R^{-1}, so that $L R=R L=I$.

In summary, we have computed the eigensystem for our example, and we can use this to transform J into diagonal form,

$$
L J R=\Lambda
$$

It is important to note that if a system is hyperbolic, J will have N real eigenvalues $\lambda^{p}, p=1, \ldots, N$, and N linearly independent right eigenvectors. Then, once the eigensystem is determined, we can use it to diagonalize the matrix J.

Suppose we want to discretize our equation at the node x_{0}, where L and R have values L_{0} and R_{0}. To get a locally diagonalized form, we multiply our system equation by the constant matrix L_{0} which nearly diagonalizes J over the region near x_{0}. We require a constant matrix so that we can move it inside all derivatives to obtain

$$
\begin{equation*}
\left[L_{0} \vec{U}\right]_{t}+L_{0} J R_{0}\left[L_{0} \vec{U}\right]_{x}=0 \tag{2}
\end{equation*}
$$

where we have inserted $I=R_{0} L_{0}$ to put the equation in a more recognizable form. The spatially varying matrix $L_{0} J R_{0}$ is exactly diagonalized at the point
x_{0}, with eigenvalues λ_{0}^{p}, and it is nearly diagonalized at nearby points. Thus the equations are sufficiently decoupled for us to apply upwind biased discretizations independently to each component with λ_{0}^{p} determining the upwind biased direction for the p-th component equation. Once this system is fully discretized, we multiply the entire system by $L_{0}^{-1}=R_{0}$ to return to the original variables.

In terms of our original equation 1 , our procedure for discretizing at a point x_{0} is simply to multiply the entire system by the left eigenvector matrix L_{0},

$$
\begin{equation*}
\left[L_{0} \vec{U}\right]_{t}+\left[L_{0} \vec{F}(\vec{U})\right]_{x}=0 \tag{3}
\end{equation*}
$$

and discretize the $p=1, \ldots, N$ scalar components of this system

$$
\begin{equation*}
\left[\left(L_{0} \vec{U}\right)_{p}\right]_{t}+\left[\left(L_{0} \vec{F}(\vec{U})\right)_{p}\right]_{x}=0 \tag{4}
\end{equation*}
$$

independently, using upwind biased differencing with the upwind direction for the p-th equation determined by the sign of λ^{p}. We then multiply the resulting spatially discretized system of equations by R_{0} to recover the spatially discretized fluxes for the original variables

$$
\begin{equation*}
\vec{U}_{t}+R_{0} \Delta\left(L_{0} \vec{F}(\vec{U})\right)=0 \tag{5}
\end{equation*}
$$

where Δ stands for the upwind biased discretization operator, i.e. either the ENO-RF or ENO-LLF discretization.

We call λ^{p} the p-th characteristic velocity or speed, $\left(L_{0} \vec{U}\right)_{p}=\vec{L}_{0}^{p} \cdot \vec{U}$ the p-th characteristic state or field (here L^{p} denotes the p-th row of L, i.e. the p-th left eigenvector of J), and $\left(L_{0} \vec{F}(\vec{U})\right)_{p}=\vec{L}_{0}^{p} \cdot \vec{F}(\vec{U})$ the p-th characteristic flux. According to the local linearization, it is approximately true that the p-th characteristic field rigidly translates in space at the p-th characteristic velocity. Thus this decomposition corresponds to the local physical propagation of independent waves or signals.

