Lecture &

Monday, April 25, 2005

Supplementary Reading: Osher and Fedkiw, §14.5.1

In the last lecture we started discussing systems of conservation laws. In par-
ticular consider a hyperbolic system of conservation laws with N equations in
one spatial dimension, given by

—

U, + [F(0)]. = 0. (1)

The idea is to decompose the system into N separate scalar equations of the
form
up + Aug, = 0.

1 Example

We start with an example of two separate scalar equations and show how we can
change variables to write them as a coupled system. Consider the two equations

U — Uy = 0
v+ v, =0
u(z,0) = up(x)
v(z,0) = vo(x)

The solution is

u(x,t) = up(z + 1)
v(z,t) = vo(x —t)

For example, figure 1 depicts the solution for the initial data given below.

[ 1, ze(-1,0)
uo(x) = { 0, otherwise

vo(z) = { 1, ze(0,1)

0, otherwise
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Figure 1: The solution is the initial data for u moving to the left with speed 1,
and the initial data for v moving to the right with speed 1.

Next we make the change of variables

w=v+u
Z=V—-U
This gives
Wy =V + Ut = —Vyp + Uy = — 2z
2t =V — Ut = Vg — Uy = — Wy

So u and v are independent of each other, but w and z depend on each other.
The system for w and z can be written as



The solution is given by

w(x, vo(z —t) + up(x + t)
z(x,t) = vo(x — t) —up(z +t)
The graph for w is shown in figure 2.
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Figure 2: The solution consists of two separate components, one moving to the
left, and the other moving to the right.

This demonstrates though the picture for w may appear complicated, the

underlying solutions u and v are simply two waves moving to the left and right.
Now we rewrite the system as

(£) (3 o)(¥).=

U, + JU, = 0.

which is in the form

Y



Similarly, we can write the system (1) in quasilinear form as
U, + F' (17) U, =0.

Here J = g—g. Recall that in the scalar case

u+ f(u), =0

where we had the quasilinear form

ug + ' (w)uy =0

the characteristic speed was given by f’(u). For the case of systems, the char-
acteristic speeds are given by the eigenvalues of the Jacobian, J.
Coming back to our example, we have

(03)

We compute the eigenvalues:

det()\I—J):‘ _Al _Al ‘:)\2—1
So the eigenvalues of J are
AM=-1,\2=1
Next we determine the eigenvectors. For A\! = —1, we have
JR' = \'R!

We solve for R! = ( Z >
0 1 a
0 b
b
=
a

Hence R' = ( 1 ) is a solution.

-1
For A2 = 1, we have

JR? = \?R?



Weso1vefor32=(2).
(o) (a)=(4)
-(¢)-(3)

) is a solution. Therefore, we have computed that

—_ =

Hence R? = (

J(R',R?) = (R",R?) ( Aol fz )

(o) (h )= ) ()

Note that if R is a matrix whose columns are the right eigenvectors of J,

or,

JR = RA
then,
R'J=AR"!

So the rows of R™! are left eigenvectors of J. We use L to denote the matrix
whose rows are the left eigenvalues of J, and we can choose it to be equal to
R7! sothat LR=RL = 1.

In summary, we have computed the eigensystem for our example, and we
can use this to transform J into diagonal form,

LJR = A.

It is important to note that if a system is hyperbolic, J will have N real
eigenvalues AP, p = 1,..., N, and N linearly independent right eigenvectors.
Then, once the eigensystem is determined, we can use it to diagonalize the
matrix J.

Suppose we want to discretize our equation at the node zg, where L and
R have values Ly and Ry. To get a locally diagonalized form, we multiply our
system equation by the constant matrix Ly which nearly diagonalizes J over the
region near xg. We require a constant matrix so that we can move it inside all
derivatives to obtain

[LoU)s + LoJ Ro[LoU], = 0 (2)

where we have inserted I = RgLg to put the equation in a more recognizable
form. The spatially varying matrix LoJ Ry is exactly diagonalized at the point



zo, with eigenvalues \j), and it is nearly diagonalized at nearby points. Thus
the equations are sufficiently decoupled for us to apply upwind biased discretiza-
tions independently to each component with A} determining the upwind biased
direction for the p-th component equation. Once this system is fully discretized,
we multiply the entire system by Ly ! = Ry to return to the original variables.
In terms of our original equation 1, our procedure for discretizing at a point
xo is simply to multiply the entire system by the left eigenvector matrix Lg,

— —

[LoUlt + [LoF (V)]s =0 3)
and discretize the p = 1,..., N scalar components of this system
[(LoD)pli + [(LoF (D))l = 0 (4)

independently, using upwind biased differencing with the upwind direction for
the p-th equation determined by the sign of A?. We then multiply the re-
sulting spatially discretized system of equations by Ry to recover the spatially
discretized fluxes for the original variables

Up + RoA(LoF(U)) = 0 (5)

where A stands for the upwind biased discretization operator, i.e. either the
ENO-RF or ENO-LLF discretization.

We call AP the p-th characteristic velocity or speed, (LOU' )p = Eg .U the
p-th characteristic state or field (here LP denotes the p-th row of L, i.e. the
p-th left eigenvector of J), and (Loﬁ(ﬁ))p = Eg - F(U) the p-th characteristic
flux. According to the local linearization, it is approximately true that the
p-th characteristic field rigidly translates in space at the p-th characteristic
velocity. Thus this decomposition corresponds to the local physical propagation
of independent waves or signals.



