
Lecture 8

Monday, April 25, 2005

Supplementary Reading: Osher and Fedkiw, §14.5.1

In the last lecture we started discussing systems of conservation laws. In par-
ticular consider a hyperbolic system of conservation laws with N equations in
one spatial dimension, given by

~Ut + [~F (~U)]x = 0. (1)

The idea is to decompose the system into N separate scalar equations of the
form

ut + λux = 0.

1 Example

We start with an example of two separate scalar equations and show how we can
change variables to write them as a coupled system. Consider the two equations

ut − ux = 0
vt + vx = 0
u(x, 0) = u0(x)
v(x, 0) = v0(x)

The solution is

u(x, t) = u0(x + t)
v(x, t) = v0(x− t)

For example, figure 1 depicts the solution for the initial data given below.

u0(x) =
{

1, x ∈ (−1, 0)
0, otherwise

v0(x) =
{

1, x ∈ (0, 1)
0, otherwise
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Figure 1: The solution is the initial data for u moving to the left with speed 1,
and the initial data for v moving to the right with speed 1.

Next we make the change of variables

w = v + u

z = v − u

This gives

wt = vt + ut = −vx + ux = −zx

zt = vt − ut = −vx − ux = −wx

So u and v are independent of each other, but w and z depend on each other.
The system for w and z can be written as(

w
z

)
t

+
(

z
w

)
x

= 0.
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The solution is given by

w(x, t) = v0(x− t) + u0(x + t)
z(x, t) = v0(x− t)− u0(x + t)

The graph for w is shown in figure 2.
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Figure 2: The solution consists of two separate components, one moving to the
left, and the other moving to the right.

This demonstrates though the picture for w may appear complicated, the
underlying solutions u and v are simply two waves moving to the left and right.

Now we rewrite the system as(
w
z

)
t

+
(

0 1
1 0

) (
w
z

)
x

= 0

which is in the form
~Ut + J ~Ux = 0.
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Similarly, we can write the system (1) in quasilinear form as

~Ut + ~F ′
(

~U
)

~Ux = 0.

Here J = ∂ ~F

∂~U
. Recall that in the scalar case

ut + f (u)x = 0

where we had the quasilinear form

ut + f ′ (u) ux = 0

the characteristic speed was given by f ′(u). For the case of systems, the char-
acteristic speeds are given by the eigenvalues of the Jacobian, J .

Coming back to our example, we have

J =
(

0 1
1 0

)
We compute the eigenvalues:

det (λI − J) =
∣∣∣∣ λ −1
−1 λ

∣∣∣∣ = λ2 − 1

So the eigenvalues of J are

λ1 = −1, λ2 = 1.

Next we determine the eigenvectors. For λ1 = −1, we have

JR1 = λ1R1

We solve for R1 =
(

a
b

)
.

(
0 1
1 0

) (
a
b

)
= −

(
a
b

)
⇒

(
b
a

)
= −

(
a
b

)

Hence R1 =
(

1
−1

)
is a solution.

For λ2 = 1, we have

JR2 = λ2R2

4



We solve for R2 =
(

c
d

)
.

(
0 1
1 0

) (
c
d

)
=

(
c
d

)
⇒

(
d
c

)
=

(
c
d

)

Hence R2 =
(

1
1

)
is a solution. Therefore, we have computed that

J
(
R1, R2

)
=

(
R1, R2

) (
λ1 0
0 λ2

)
or, (

0 1
1 0

) (
1 1
−1 1

)
=

(
1 1
−1 1

) (
−1 0
0 1

)
Note that if R is a matrix whose columns are the right eigenvectors of J ,

JR = RΛ

then,

R−1J = ΛR−1

So the rows of R−1 are left eigenvectors of J . We use L to denote the matrix
whose rows are the left eigenvalues of J , and we can choose it to be equal to
R−1, so that LR = RL = I.

In summary, we have computed the eigensystem for our example, and we
can use this to transform J into diagonal form,

LJR = Λ.

It is important to note that if a system is hyperbolic, J will have N real
eigenvalues λp, p = 1, . . . , N , and N linearly independent right eigenvectors.
Then, once the eigensystem is determined, we can use it to diagonalize the
matrix J .

Suppose we want to discretize our equation at the node x0, where L and
R have values L0 and R0. To get a locally diagonalized form, we multiply our
system equation by the constant matrix L0 which nearly diagonalizes J over the
region near x0. We require a constant matrix so that we can move it inside all
derivatives to obtain

[L0
~U ]t + L0JR0[L0

~U ]x = 0 (2)

where we have inserted I = R0L0 to put the equation in a more recognizable
form. The spatially varying matrix L0JR0 is exactly diagonalized at the point
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x0, with eigenvalues λp
0, and it is nearly diagonalized at nearby points. Thus

the equations are sufficiently decoupled for us to apply upwind biased discretiza-
tions independently to each component with λp

0 determining the upwind biased
direction for the p-th component equation. Once this system is fully discretized,
we multiply the entire system by L−1

0 = R0 to return to the original variables.
In terms of our original equation 1, our procedure for discretizing at a point

x0 is simply to multiply the entire system by the left eigenvector matrix L0,

[L0
~U ]t + [L0

~F (~U)]x = 0 (3)

and discretize the p = 1, . . . , N scalar components of this system

[(L0
~U)p]t + [(L0

~F (~U))p]x = 0 (4)

independently, using upwind biased differencing with the upwind direction for
the p-th equation determined by the sign of λp. We then multiply the re-
sulting spatially discretized system of equations by R0 to recover the spatially
discretized fluxes for the original variables

~Ut + R0∆(L0
~F (~U)) = 0 (5)

where ∆ stands for the upwind biased discretization operator, i.e. either the
ENO-RF or ENO-LLF discretization.

We call λp the p-th characteristic velocity or speed, (L0
~U)p = ~Lp

0 · ~U the
p-th characteristic state or field (here Lp denotes the p-th row of L, i.e. the
p-th left eigenvector of J), and (L0

~F (~U))p = ~Lp
0 · ~F (~U) the p-th characteristic

flux. According to the local linearization, it is approximately true that the
p-th characteristic field rigidly translates in space at the p-th characteristic
velocity. Thus this decomposition corresponds to the local physical propagation
of independent waves or signals.
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