CS 237C(CME 306) Midterm I

May 2, 2005

Name	
SUID	
Signature	

Question	Points	Score
1	15	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	5	
10	25	
11	20	
Total	100	

- 1. Indicate whether each statement is true or false.
 - **T** / **F** Unlike shocks, contact discontinuities travel at the local characteristic speed.
 - \mathbf{T} / \mathbf{F} The weak solution of a conservation law is unique.
 - **T** / **F** The vanishing viscosity solution of a conservation law converges to the entropy satisfying weak solution of the conservation law.
 - **T** / **F** Consider a weak solution for Burgers equation. In the interior of a rarefaction wave, the solution also satisfies the strong form.
 - **T** / **F** A high resolution method refers to a method where, almost everywhere in the domain, the dominant error term is high order, even if the method has a low order of accuracy.
 - ${\bf T}$ / ${\bf F}$ A linear, second order accurate numerical method is stable if and only if it is convergent.
 - ${\bf T}$ / ${\bf F}$ The Lax-Wendroff theorem tells us under which conditions a numerical approximation can be expected to converge.
- 2. Let \mathcal{N} denote a consistent, linear, one-step numerical method. Which of the following statements are true?
 - I. If $\|\mathcal{N}\| > 1$ then the method is unstable.
 - II. If the method yields a numerical solution whose norm grows exponentially in time then the method is unstable.
 - III. If the method does not satisfy the CFL condition then the method is unstable.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) II and III only
 - (e) I, II, and III

- 3. The ENO-RF method is preferable to the ENO-Roe method for computing the numerical flux function because ENO-Roe
 - (a) results in too much dissipation in the numerical solution.
 - (b) may create spurious oscillations in the vicinity of shocks and other nonlinear phenomena.
 - (c) may compute a nonphysical weak solution.
 - (d) has a lower order of accuracy.
 - (e) can be shown to diverge in some cases where ENO-RF converges.
- 4. Which statement is true?
 - (a) Second order TVD Runge-Kutta is an improvement upon second order Runge-Kutta because the latter is not always TVD.
 - (b) The exact solution of the scalar, constant coefficient advection equation has total variation which decreases in time. Therefore, TVD schemes which mimic this behavior are desirable.
 - (c) If we have a spatial discretization such that a forward Euler step is TVB, then third order TVD Runge-Kutta in conjunction with that spatial discretization is TVB.
 - (d) If we have a spatial discretization such that a forward Euler step is TVB, then third order TVD Runge-Kutta in conjunction with that spatial discretization is TVD.
 - (e) None of the above.
- 5. Consider the first order upwind method for the scalar, constant coefficient advection equation $u_t + au_x = 0$. Which statement is true?
 - (a) Modified equation analysis for the method indicates that the numerical solution will exhibit dispersive behavior.
 - (b) In exact arithmetic, if we take $\frac{\Delta x}{\Delta t} = |a|$, the method can yield the exact solution.
 - (c) The method is unconditionally stable.
 - (d) The method is preferable to explicit central differencing, although both methods have the same order of accuracy.
 - (e) None of the above.

- 6. Consider the scalar conservation law $u_t + \left(\frac{u^2}{2}\right)_x = 0$. Which of the following statements are necessarily true?
 - I. The characteristic curves are straight lines.
 - II. Shocks travel in straight lines.
 - III. Shocks cannot form if the initial data is smooth.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) I, II, and III
- 7. Which of the following schemes for Burgers equation can be written in discrete conservation form?

I.
$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + u_{j}^{n} \left(\frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x} \right) = 0$$

II.
$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + u_{j}^{n} \left(\frac{u_{j+1}^{n} - u_{j-1}^{n}}{2\Delta x} \right) = 0$$

III.
$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + \frac{1}{\Delta x} \left(\frac{1}{2} \left(u_{j}^{n} \right)^{2} - \frac{1}{2} \left(u_{j-1}^{n} \right)^{2} \right) = 0$$

- (a) None
- (b) III only
- (c) II and III only
- (d) I and II only
- (e) I and III only
- 8. ENO schemes construct an interpolating polynomial in order to
 - (a) use higher order interpolation near steep gradients and discontinuities.
 - (b) create a numerical stencil that avoids crossing shocks.
 - (c) allow for higher order in time approximations to u_t .
 - (d) remain conservative.
 - (e) none of the above

- 9. Consider a consistent, stable, linear, one-step numerical method. Which of the following statements are true?
 - I. Local truncation errors accumulate at each time step.
 - II. Local truncation errors accumulate and may be amplified at each time step.
 - III. In order to get convergence to the exact solution, we must choose the initial data for the scheme to be equal pointwise to the initial data for the exact solution.
 - (a) I only
 - (b) III only
 - (c) I and II only
 - (d) I and III only
 - (e) I, II and III

10. Consider the scalar, constant coefficient advection equation

$$u_t + au_x = 0$$

and the following numerical method for computing an approximate solution to it.

$$u_{j}^{n+1} = \frac{1}{2} \left(u_{j-1}^{n} + u_{j+1}^{n} \right) - \frac{\Delta t}{2\Delta x} a \left(u_{j+1}^{n} - u_{j-1}^{n} \right)$$

Analyze the stability and consistency of the method. What is the order of accuracy of the method? What can you say about convergence of the method? You may assume that $\frac{\Delta t}{\Delta x} = constant$.

 $11. \ {\rm Consider}$ the scalar, constant coefficient advection equation

$$u_t + au_x = 0$$

Show that for this equation, the ENO-Roe and ENO-LLF schemes will produce identical numerical approximations.